Selected Publications

JOURNAL ARTICLES, BOOK CHAPTERS, REFEREED CONFERENCE PROCEEDINGS

(Bolding indicates staff, students, visiting scholars from the Center for Applied GIScience)

2024

Price, M.D., McDermott, K.M., Gorijavolu, R., Chidiac, C., Li, Y., Hoops, K., Slidell, M.B. and Nasr, I.W., 2024. Pediatric Firearm Reinjury: A Retrospective Statewide Risk Factor Analysis. Journal of Surgical Research, 303, pp.568-578.

Yang, J., Shi, R., Tang, W., Wang, J., Gong, J., Xu, G., Yang, S., Wang, L. and Chen, Y., 2024. MUSE: an open-access platform for urban expansion simulation with multitype patch generation engine and multilevel morphology regulation. International Journal of Geographical Information Science, pp.1-31.

Tang, W., Chen, T., & Armstrong, M. P. (2024). GPU-accelerated parallel all-pair shortest path routing within stochastic road networks. International Journal of Geographical Information Science, 1-33.

Chen, T., Tang, W., Allan, C., & Chen, S. E. (2024). Explicit Incorporation of Spatial Autocorrelation in 3D Deep Learning for Geospatial Object Detection. Annals of the American Association of Geographers, 1-20.

Lin, S., Chen, S. E., Tang, W., Chavan, V., Shanmugam, N., Allan, C., & Diemer, J. (2024). Landslide Risks to Bridges in Valleys in North Carolina. GeoHazards5(1), 286-309.

Shukla, T., Tang, W., Trettin, C. C., Chen, S. E., & Allan, C. (2024). Determination of Microtopography of Low-Relief Tidal Freshwater Forested Wetlands Using LiDAR. Remote Sensing16(18), 3463.

2023

Tang, W., Hearne, H., Slocum, Z., and Chen, T., 2023, GIS-based scientific workflows for automated spatially driven sea level rise modeling, Sustainability. 15&17): 12704

Zhang, Z. and Tang, W., 2023. Mixed landform with high-rise buildings: A spatial analysis integrating horizon-vertical dimension in natural-human urban systems. Land Use Policy132, p.106806.

An, L., Grimm, V., Bai, Y., Sullivan, A., Turner II., B.L., Malleson, N., Heppenstall, A., Vincenot, C., Robinson, D., Ye, X., Liu, J., Lindvist, E., and Tang W., 2023. Modeling agent decision and behavior in the light of data science and artificial intelligence. Environmental Modeling & Software. 166: p. 105713.

Shukla, T., Tang, W., Trettin, C.C., Chen, G., Chen, S., Allan, C., 2023, Quantification of Microtopography in Natural Ecosystems Using Close-Range Remote Sensing. Remote Sensing. 15(9): 2387

Yang, J., Tang, W., Gong, J., Shi, R., Zheng, M., and Dai, Y., 2023, Simulating urban expansion using a patch-based cellular automata model with spatiotemporally explicit representation of urban demand, Landscape and Urban Planning. 231: 104640.

2022

Tang, W., Chen, S. E., Diemer, J., Allan, C., Chen, T., Slocum, Z., … & Shanmugam, N. S. (2022). DeepHyd: A Deep Learning-Based Artificial Intelligence Approach for the Automated Classification of Hydraulic Structures from LiDAR and Sonar Data (No. FHWA/NC/2019-03). North Carolina Department of Transportation. Research and Development Unit.

Dai, Z., Trettin, C.C., Mangora, M., and Tang, W., 2022, Soil carbon with the mangrove landscape in Rufiji River Delta, Tanzania, Wetlands 42:89https://doi.org/10.1007/s13157-022-01608-9

Hohl, A., Tang, W., Casas, I., Shi, X., Delmelle, E., accepted, Detecting space-time patterns under non-stationary background population, Journal of Geographical Systems.

Chen, S.E., Lin, S., Cheng, C.T., Bhowmik, S., Tang, W., Baez-Rivera, Y. and Martinez, R., 2022. Two-Story Residential Structure Damages after the 2020 Puerto Rico Earthquake. Journal of Performance of Constructed Facilities36(2), p.04022006.

Chavan, V.S., Chen, S.E., Shanmugam, N.S., Tang, W., Diemer, J., Allan, C., Braxtan, N., Shukla, T., Chen, T. and Slocum, Z., 2022. An Analysis of Local and Combined (Global) Scours on Piers-on-Bank Bridges. CivilEng3(1), pp.1-20.

2021

An, L., Grimm, V., Sullivan, A., TurnerII, B.L., Malleson, N., Heppenstall, A., Vincenot, C., Robinson, D., Ye, X., Liu, J. and Lindkvist, E., 2021. Challenges, tasks, and opportunities in modeling agent-based complex systems. Ecological Modelling457, p.109685.

Chen, S.E., Pando, M.A., Irizarry, A.A., Baez-Rivera, Y., Tang, W. and Ng, Y., 2021, July. Resiliency of Power Grid Infrastructure Under Extreme Hazards-Observations and Lessons Learned from Hurricane Maria in Puerto Rico. In Civil Infrastructures Confronting Severe Weathers and Climate Changes Conference (pp. 1-17). Springer, Cham.

Trettin, C.C., Dai, Z., Tang, W., Lagomasino, D., Thomas, N., Lee, S.K., Simard, M., Ebanega, M.O., and Fatoyinbo, T.E., 2021. Mangrove carbon stocks in Pongara National Park, Gabon. Estuary Coast and Shelf Science.

Gibas, C., Lambirth, K., Mittal, N. Juel, M., Barua, V., Brazell, L., Hinton, K., Lontai, J.., Stark, N., Yound, I., Quach, C., Russ, M., Kauer, J., Nicolosi, B., Akella, S., Tang, W., Chen, D., Schlueter, J., Munir, M., 2021. Implementing building-level SARS-CoV-2 wastewater surveillance on a University campus, Science of The Total Environment, 782: 146749.

2020

Li, Z., Tang, W., Huang, Q., Shook, E. and Guan, Q., 2020. Introduction to Big Data Computing for Geospatial Applications, ISPRS International Journal of Geo-Information.

Lan, Y., Tang, W., Dye, S. and Delmelle, E., 2020. A web-based spatial decision support system for monitoring the risk of water contamination in private wells. Annals of GIS, pp.1-17.

Owusu, C., Delmelle, E., Tang, W., Silverman, G., and Dye, S., in press, A multi-stage geocoding approach for the development of private wells database, Gaston County, North Carolina. Submitted to: Journal of Environmental Health

Zheng, M., Tang, W., Akinwumi Ogundiran, Jianxin Yang, 2020, Spatial simulation modeling of settlement distribution driven by random forest: Consideration of landscape visibility, Sustainability 12(11): 4748.

Chen, S.E., Tang, W., Irizarry, A.A., Baez-Rivera, Y., Pando, M.A., Majrekar, M., Young, D. and Ng, Y., 2020. Posthurricane Investigation of a Critical Component toward Improved Grid Resiliency in Puerto Rico. Journal of Performance of Constructed Facilities34(4), p.02520001.

Tang, W., and Wang, S. (ed), 2020, High Performance Computing for Geospatial Applications, Springer Nature.

Slocum, Z., and Tang, W., 2020, Integration of Web GIS with high performance computing: A container-based cloud computing approach. In: High Performance Computing for Geospatial Applications, edited by Wenwu Tang and Shaowen Wang, Springer, pp. 135-157.

Tang, W., Volker Grimm, Leigh Tesfatsion, Eric Shook, David Bennett, Li An, Zhaya Gong, and Xinyue Ye, 2020, Code reusability and transparency of agent-based modeling: A review from a cyberinfrastructure perspective. In: High Performance Computing for Geospatial Applications, edited by Wenwu Tang and Shaowen Wang, Springer, pp. 115-134.

Hohl, A., Saule, E., Delmelle, E., and Tang, W., 2020, Spatiotemporal domain decomposition for high performance computing: A flexible splits heuristic to minimize redundancy. In: High Performance Computing for Geospatial Applications, edited by Wenwu Tang and Shaowen Wang, Springer, pp. 27-50.

Zheng, M.Tang, W., Ogundiran, A., Chen, T., and Yang, J., 2020, Parallel landscape visibility analysis: A case study in archaeology. In: High Performance Computing for Geospatial Applications, edited by Wenwu Tang and Shaowen Wang, Springer, pp. 77-96

Gong, Z., and Tang, W., 2020, Domain applications of high-performance computing in urban studies, In: High Performance Computing for Geospatial Applications, edited by Wenwu Tang and Shaowen Wang, Springer, pp. 211-225.

Tang, W., 2020, Cartographic mapping driven by high performance computing: A review. In: High Performance Computing for Geospatial Applications, edited by Wenwu Tang and Shaowen Wang, Springer, pp. 159-172.

Tang, W., and Wang, S., 2020, Navigating high-performance computing for geospatial applications. In: High Performance Computing for Geospatial Applications, edited by Wenwu Tang and Shaowen Wang, Springer, pp. 1-5

Desjardins, M.R., Hohl, A. and Delmelle, E.M., 2020. Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic: Detecting and evaluating emerging clusters. Applied Geography, p.102202.

Desjardins, M.R., Casas, I., Victoria, A.M., Carbonell, D., Dávalos, D.M. and Delmelle, E.M., 2020. Knowledge, attitudes, and practices regarding dengue, chikungunya, and Zika in Cali, Colombia. Health & Place63, p.102339.

Tang, W., and Yang, J., 2020, Agent-based land change modeling of a large watershed: Space-time locations of critical threshold, Journal of Artificial Societies and Social Simulation. 23(1): 15. Online available at: http://jasss.soc.surrey.ac.uk/23/1/15.html

Yang, J., Gong, J., Tang, W., and Liu, C., 2020, Patch-based cellular automata model of urban growth simulation: Integrating feedback between quantitative composition and spatial configuration, Computers, Environment and Urban Systems, 79, 101402.

2019

Yang, J., Gong, J., Tang, W., Shen, Y., Liu, C. and Gao, J., 2019. Delineation of Urban Growth Boundaries Using a Patch-Based Cellular Automata Model under Multiple Spatial and Socio-Economic Scenarios. Sustainability11(21), p.6159.

Zhao, X., Ma, X.Tang, W. and Liu, D., 2019. An adaptive agent-based optimization model for spatial planning: A case study of Anyue County, China. Sustainable Cities and Society, p.101733.

Yang, J., Gong, J. and Tang, W., 2019. Prioritizing Spatially Aggregated Cost-Effective Sites in Natural Reserves to Mitigate Human-Induced Threats: A Case Study of the Qinghai Plateau, China. Sustainability11(5), p.1346.

Zheng, M.Tang, W., and Zhao, X., 2019, Hyperparameter optimization of neural nework-driven spatial modeling accelerated using cyber-enabled high-performance computing, International Journal of Geographical Information Scien. 33(2): 314-345

Owusu, C., Desjardins, M.R., Baker, K.M. and Delmelle, E., 2019. Residential mobility impacts relative risk estimates of space-time clusters of chlamydia in Kalamazoo County, Michigan. Geospatial health14(2).

Desjardins, M.R., Hohl, A.Griffith, A. and Delmelle, E., 2019. A space–time parallel framework for fine-scale visualization of pollen levels across the Eastern United States. Cartography and Geographic Information Science46(5), pp.428-440.’

Delmelle, E.M., Marsh, D.M., Dony, C. and Delamater, P.L., 2019. Travel impedance agreement among online road network data providers. International Journal of Geographical Information Science33(6), pp.1251-1269.

Casas, I. and Delmelle, E., 2019. Landscapes of healthcare utilization during a dengue fever outbreak in an urban environment of Colombia. Environmental monitoring and assessment191(2), p.279.

Desjardins M.; Hohl A.; Casas I and E.M. Delmelle. Identifying and Visualizing Space-Time Clusters of Vector-Borne Diseases. In. F. Faruque (Ed). Geospatial Technology for Human Well-Being and Health. Accepted December 2019

2018

Shoffner, A., Wilson, A.M., Tang, W., and Gagne, S.A., 2018, The relative effects of forest amount, forest configuration, and urban matrix quality on forest breeding birds. Scientific Reports.8(1): p17140

Desjardins, M. R., Whiteman, A., Casas, I., & Delmelle, E. (2018). Space-time clusters and co-occurrence of chikungunya and dengue fever in Colombia from 2015 to 2016. Acta tropica185, 77-85. 

Desjardins, M. R., Hohl, A., Griffith, A., & Delmelle, E. (2018). A space–time parallel framework for fine-scale visualization of pollen levels across the Eastern United States. Cartography and Geographic Information Science, 1-13. 

Yu, Y., Han, Q., Tang, W., Yuan, Y., and Tong, Y., 2018, Exploration of the industrial spatial linkages in urban agglomerations: A case of urban agglomeration in the Middle Reaches of the Yangtze River, China, Sustainability, 10 (5): 1469.

Yu, Y.He, J.Tang, W., and Li, C., 2018, Modeling urban collaborative growth dynamics using a multiscale simulation model for the Wuhan Urban Agglomeration Area, China, ISPRS International Journal of Geo-Information, 7(5), 176.  

Tang, W.Zheng, M., Zhao, X., Shi, J., Yang, J., and Trettin, C.C., 2018, Big geospatial data analytics for global mangrove biomass and carbon estimationSustainability.

Yu, Y., Tong, Y., Tang, W., Yuan, Y., Chen, Y., 2018, Identifying the spatiotemporal interaction between urbanization and eco-environment in the urban agglomeration in the Middle Reaches of the Yangtze River, China, Sustainability

Zheng, M., Tang, W., Lan, Y., Zhao, X., Jia, M., Allan, C., and Trettin, C., in press, Parallel generation of very high resolution digital elevation models: High-performance computing for big spatial data analysis, In: Big Data in Engineering Applications, edited by  Sanjiban Sekhar Roy, Springer.

Tang, W., Feng, W., Deng, J., Jia, M. and Zuo, H., 2018. Parallel Computing for Geocomputational Modeling. In GeoComputational Analysis and Modeling of Regional Systems. Springer, Cham. pp. 37-54

2017

Delmelle, E.Desjardins, M. R., & Deng, J. 2017. Designing spatially cohesive nature reserves with backup coverage. International Journal of Geographical Information Science31(12), 2505-2523. 

Hohl, A., Zheng, M., Tang, W., Delmelle, E., and Casas, I., 2017. Spatiotemporal Point Pattern Analysis Using Ripley’s K Function. Geospatial Data Science: Techniques and Applications. Taylor & Francis.

Owusu, C., Lan, Y.Zheng, M., Tang, W., and Delmelle, E., 2017. Geocoding Fundamentals and Associated Challenges. Geospatial Data Science: Techniques and Applications. Taylor & Francis.

Liu, D.Tang, W., Liu, Y., Zhao, X., and He, J., 2017, Optimal rural land use allocation in central China: linking the effect of spatiotemporal patterns and policy interventions. Applied Geography.86, pp.165-182.

Gong, J., Li, J., Yang, J., Li, S. and Tang, W., 2017. Land Use and Land Cover Change in the Qinghai Lake Region of the Tibetan Plateau and Its Impact on Ecosystem Services. International Journal of Environmental Research and Public Health14(7), p.818.

Zhang, Z.Tang, W.Gong, J., and Huan, J., 2017, Property rights of urban underground space in China: A public good perspective, Land Use Policy, 65, 224-237.

Zhu, Q., and Tang, W., 2017, Regional-level carbon allocation in China based on sectoral emission, Sustainability. 9(4): 552

Tang, W.Feng, W., Jia, M., Shi, J., Zuo, H., Stringer, C.E., and Trettin, C.C., 2017, A cyber-enabled spatial decision support system to inventory mangroves in Mozambique: Coupling scientific workflows with cloud computing. International Journal of Geographical Information Science. 31(5): 907-938

Tang, W.Feng, W.Zheng, M., and Shi, J., in press, Land cover classification of fine-resolution remote sensing data driven by cyber-enabled high-performance and parallel computing, Remote Sensing Applications for Societal Benefits, edited by Steve Walsh, Elsevier.

Tang, W., and Feng, W., 2017, Parallel map projection of vector-based big spatial data using general-purpose Graphics Processing Units, Submitted to: Computers, Environment and Urban Systems. 61: 187-197 IF: 1.674.

Tang, W., 2017, GPU computing, edited by Michael F. Goodchild and Marc P. Armstrong, International Encyclopedia of Geography. DOI: 10.1002/9781118786352.wbieg0129

Gong, Z., Tang, W., and Thill, J., 2017. A graph-based locality-aware approach to scalable parallel agent-based models of spatial interactions, Advances in Geocomputation, edited by Daniel Griffith, Yongwan Chun, Dean D.. Springer, Cham

Erik Saule, Dinesh Panchananam, Alexander HohlWenwu Tang, and Eric Delmelle, (accepted), Parallel space-time kernel density estimation, Proceedings of ICPP-2017.

Gong, Z., Tang, W., Thill, J., 2017 (accepted), Massively parallel simulations of agent-based spatial interaction: A Many-core computing approach with spatial big data, The 20th AGILE Conference on Geographic Information Science. May 9-12, 2017, Wageningen, Netherlands.

2016

Hohl, A.Delmelle, E., and Tang, W., Casas, I., 2016, Accelerating the detection of space-time patterns of vector-borne diseases using parallel computing, Spatial and Spatio-temporal Epidemiology. 19: 10-20

Niu, J.Tang, W.Xu, F., Zhou, X., Song, Y., 2016, Global Research on Artificial Intelligence from 1990-2014: Spatially Explicit Bibliometric Analysis. ISPRS International Journal of Geo-Information.5(5):66 (Link)

Zhang, Z., and Tang, W.*, 2016, Analysis of spatial patterns of public attention on housing prices in Chinese cities: A Web search engine approach, Applied Geography. 70: 68-81 IF: 2.494 (*corresponding author)

Tang, W.Feng, W.Jia, M.Shi, J., Zuo, H., and Trettin, C.C., 2016, The assessment of mangrove biomass and carbon in West Africa: A spatially explicit analytical framework. Wetland Ecology and Management. 24(2): 153-171 IF: 1.274 

2015

Gong, J., Yang, J., and Tang, W.*, 2015. Spatially Explicit Landscape-level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China, International Journal of Environmental Research and Public Health, 12(11): 14192-14215. IF: 2.063 (*Corresponding author)

Stringer, C. E., Trettin, C. C., Zarnoch, S. J., & Tang, W. (2015). Carbon stocks of mangroves within the Zambezi River Delta, Mozambique. Forest Ecology and Management354, 139-148. IF: 2.487

Zhang, Z, Tan, S., and Tang, W., 2015, A GIS-based spatial analysis of housing price and road density in proximity to urban lakes in Wuhan City, China, Chinese Geographical Science, 25(6) pp. 775-790 IF:0.877

Hohl, A., Delmelle, E. M., and Tang, W., 2015, Spatiotemporal domain decomposition for massive parallel computation of space-time kernel density, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-4/W2, 7-11. (URL)

Gong, Z., Tang, W., Thill, J-C, 2015, A Locality-aware Approach to Scalable Parallel Agent-based Models of Spatially Heterogeneous Interactions, Proceedings of Geocomputation 2015.

Tang, W., Feng, W., and Jia, M., 2015, Massively Parallel Spatial Point Pattern Analysis: Ripley’s K Function Accelerated Using Graphics Processing Units, International Journal of Geographical Information Science. 29(3): 412-439

Delmelle, E., Jia, M., Dony, C., Casas, I., Tang, W., 2015, Space-time visualization of dengue fever outbreaks. Spatial Analysis in Health Geography, edited by Kanaroglou, P., Delmelle, E., Paez, A., Ashgate. p.85-99

2014

Stringer, C.E.; Trettin, C.C.; Zarnoch, S.J.; Tang, W. The Zambezi River Delta Mangrove Carbon Project: A Pilot Baseline Assessment for REDD+ Reporting and Monitoring; United States Forest Service: Washington, DC, USA, 2014 (URL).

Griffith, A. D., Coburn, A.S., Peek, K.M., and Young, R.S., 2014, Hurricane Sandy: Did Beach Nourishment Save New Jersey?  In Learning from the Impacts of Superstorm Sandy, Bennington, B. & Farmer, E.C. (Eds.). Academic Press, London.

Delmelle, E.M., Zhu, H., Tang, W., and Cacas, I., 2014, A web-based geospatial toolkit for the monitoring of dengue fever, Applied Geography, 52: 144-152. IF: 2.779.

Delmelle, E.Dony, C., Casas, I., Jia, M.Tang, W., 2014, Visualizing the impact of space-time uncertainties on Dengue Fever patterns. International Journal of Geographical Information Science28(5): 1107-1127. IF: 1.613.

Tang, W., and Jia, M., 2014, Global sensitivity analysis of large agent-based modeling of spatial opinion exchange: A heterogeneous multi-GPU acceleration approach, Annals of Association of American Geographers. 104(3): 485-509. IF: 2.110.

Hohl, A., Václavík T., Meentemeyer, R.K., 2014, Go with the flow: geospatial analytics to quantify hydrologic landscape connectivity for passively dispersed microorganisms, International Journal of Geographical Information Science 28(8): 1626-1641 IF: 1.613

2013

Fagan, W. Lewis, M., Auger-Méthé, M. Avgar, T., Benhamou, S., Breed, G., LaDage, L., Schlaegel, U., Tang, W., Papastamatiou, Y.; Forester, J.; Mueller, T., 2013, Spatial memory and animal movement, Ecology Letters. 16(10): 1316-1329 IF: 17.949.

Tang, W., 2013, Parallel construction of large circular cartograms using Graphics Processing Units, International Journal of Geographical Information Science. 27(11): 2182-2206 IF: 1.613.

Tang, W., 2013, Accelerating agent-based modeling using Graphics Processing Units, edited by Shi, X., Vlad, Yang, C., Modern Accelerator Technologies for Geographic Information Science, Springer, New York, pp. 113-129.

Gong, Z.Tang, W., Bennett, D.A., and Thill, J.C. Parallel agent-based simulation of individual-level spatial interactions within a multi-core computing environment. International Journal of Geographical Information Science 27, no. 6 (2013): 1152-1170. IF: 1.613.

Shook, E., Wang, S., and Tang, W. 2013. A communication framework for parallel spatially explicit agent-based models. International Journal of Geographical Information Science. 27 (11): 2160-2181IF: 1.613.

He, J., Liu, Y., Yu, Y., Tang, W., and Liu, D. 2013. A counterfactual scenario simulation approach for assessing the impact of farmland preservation policies on urban sprawl and food security in a major grain-producing area of China. Applied Geography 37: 127-138. (URL). IF: 2.779.

Meentemeyer, R.K., Tang, W.Dorning, M.Vogler, J.B., Cunniffe, N.J., and Shoemaker. D.A. FUTURES: Multilevel simulations of emerging urban-rural landscape structure using a stochastic patch-growing algorithm. Annals of the Association of American Geographers 103, no. 4 (2013): 785-807(URL). IF: 2.110.

Dillon, W.W., Vogler, J.B., Cobb, R.C., Metz, M.R., Rizzo, D.M. and Meentemeyer, R.K. In press. Range-wide threats to a foundation tree species from disturbance interactions. Madroño.

Cobb, R.C. Rizzo, D.M., Garbelotto, M., Filipe, J.A.N., Gilligan, C.A., Meentemeyer, R.K. Dillon, W., Valachovic, Y., Swieki, T., Hansen, E.M., and Frankel, S.J. In press. Biodiversity conservation in the face of dramatic forest disease: an integrated conservation strategy for tanoak (notholithocarpus densiflorus) threatened by sudden oak death. Madroño. (Special issue organized by USDA Forest Service)

Hagenlocher M., Kienberger S., Casas I. and Delmelle, E.M. Assessing socioeconomic vulnerability to dengue fever in Cali, Colombia: Statistical vs. expert-based modeling International Journal of Health Geographics – In Press. IF: 2.195.

Delmelle E.M., Cassell H., Dony C., Radcliff, E., Tanner, J.-.P., Siffel, C. and R. Kirby. Modeling travel impedance to medical care for children with birth defects using Geographic Information Systems, Birth Defects Part A: Clinical Molecular Teratology.  Accepted June 2013. IF: 3.146.

Delmelle E., Kim C.J., Xao N. and Chen W. Methods for space-time pattern analysis and modeling: An overview. Int. J. Applied Geospatial Research . IF: 0.64.

Delmelle E., Casas I. , Rojas J. and A. Varelo. Modeling spatio-temporal patterns of dengue fever in Cali, Colombia, Int. J. Applied Geospatial Research. IF: 0.64.

2012

Gong, Z, Tang, W., and Thill, J.C., 2012, Parallelization of ensemble neural networks for spatial land-use modeling, Proceedings of ACM SIGSPATIAL IWGS Workshop, p48-54.

Tang, W. and Bennett, D.A., 2012, Reprint of: Parallel agent-based modeling of spatial opinion diffusion accelerated using Graphics Processing Units, Ecological Modelling 229: 108-118.

Singh, K.K., Vogler, J.B., Shoemaker, D.A., and Meentemeyer, R.K. 2012. LiDAR-Landsat data fusion for large-area assessment of urban land cover: balancing spatial resolution, data volume and mapping accuracy. ISPRS Journal of Photogrammetry and Remote Sensing 74: 110-121. (URL)

Meentemeyer, R.K., Haas, S.E., and Vaclavik, T. 2012. Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annual Review of Phytopathology 50: 379-402. (URL)

Metz, M.R., Frangioso, K.M., Wickland, A.C., Meentemeyer, R.K., and Rizzo, D.M. 2012. An emergent disease causes directional changes in forest species composition in coastal California. Ecosphere 3:art86. (URL)

Cobb, R.C., Chan, M., Meentemeyer, R.K., and Rizzo, D.M. 2012. Common factors drive disease and coarse woody debris dynamics in forests impacted by sudden oak death. Ecosystems 15(2): 242-255. (URL)

Cobb, R.C., Filipe, J.A.N., Meentemeyer, R.K., and Gilligan, C.A. and Rizzo, D.M. 2012. Ecosystem transformation by emerging infectious disease: loss of large tanoak from California forests. Journal of Ecology 100(3): 712-722. (URL)

Wang, C., Thill, J.C., and Meentemeyer, R.K. 2012. Estimating the demand for public open space: Evidence from North Carolina Municipalities. Papers in Regional Science 91(1): 219-232(URL)

Lamsal, S., Rizzo, D.M., and Meentemeyer, R.K. 2012. Spatial variation and prediction of forest biomass in a heterogeneous landscape. Journal of Forestry Research 23(1): 13-22. (URL)

Filipe, J.A.N., Cobb, R.C., Meentemeyer, R.K., Lee, C.A., Valachovic, Y.S., Cook, A.R., Rizzo, D.M., and Gilligan, C.A. 2012. Landscape epidemiology and control of pathogens with cryptic and long-distance dispersal: Sudden Oak Death in Northern Californian forests. PLoS Computational Biology 8(1): e1002328 (URL).

Vaclavik, T., Kupfer, J.A., and Meentemeyer, R.K. 2012. Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). Journal of Biogeography 39(1): 42-55.(URL)

Vaclavik, T. and Meentemeyer, R.K. 2012. Equilibrium or not? Modeling potential distribution of invasive species in different stages of invasion. Diversity and Distributions 18(1): 73-83. (URL)

Delmelle E., S. Li and A. Murray. Identifying bus stop redundancy: A GIS-based spatial optimization approach. Computers, Environment and Urban Systems, vol. 35: 445-455. IF: 1.674.

Delmelle E. and E.C. Delmelle. Spatio-temporal commuting patterns in a university environment, Transport Policy, vol. 21: 1-9. IF: 1.71.

Yan S., Delmelle E. and M. Duncan. Impact of a light rail on single family property values in Charlotte. Journal of Transportation and Land Use, vol. 5.

Dao D., Zhou Y., Thill J.-C. and Delmelle E.. Spatio-temporal location modeling of AEDs as emergency medical devices in a 3D indoor Environment. International Journal of Geographical Information Science, vol. 26: 469-494. IF: 1.47.

2011

Haas, S.E., Hooten, M.B., Rizzo, D.M., and Meentemeyer, R.K. 2011. Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecology Letters 14(11): 1108-1116(URL)  

Tang, W., Wang, S., Bennett, D.A., and Liu Y. 2011. Agent-based modeling within a cyberinfrastructure environment: a service-oriented computing approach. International Journal of Geographical Information Science 25(9): 1323-1346(URL)

Jensen, J.L.R., Humes, K.S., Hudak, A.T., Vierling, L.A., and Delmelle, E. 2011. Evaluation of the MODIS LAI product using independent lidar-derived LAI: A case study in mixed conifer forest. Remote Sensing of Environment 115(12): 3625-3639(URL)

Rizzo, D.M., Meentemeyer, R.K., and Garbelotto, M. 2011. The emergence of Phytophthora ramorum in North America and Europe, in L. Olsen, E.R. Choffnes, D.A. Relman, and L. Pray, eds., Fungal Diseases: An Emerging Threat to Human, Animal, and Plant Health. The National Academies Press.

Lamsal, S., Cobb, R.C., Cushman, J.H., Meng, Q., Rizzo, D.M., and Meentemeyer, R.K. 2011. Spatial estimation of the density and carbon content of host populations for Phytophthora ramorum in California and Oregon. Forest Ecology and Management 262(6):989-998. (URL)

Metz, M.R., Frangioso, K.M., Meentemeyer, R.K., and Rizzo, D.M. 2011. Interacting disturbances: Wildfire severity affected by stage of forest disease invasion. Ecological Applications 21(2): 313-320(URL)

Vaclavikova, M.Vaclavik, T., and Kostkan, V. 2011. Otters vs. fishermen: Stakeholders’ perceptions of otter predation and damage compensation in the Czech Republic. Journal for Nature Conservation 19(2): 95-102(URL)

Meentemeyer, R.K., Cunniffe, N.J., Cook, A.R., Filipe, J.A.N., Hunter, R.D., Rizzo, D.M., and Gilligan, C.A. 2011. Epidemiological modeling of invasion in heterogeneous landscapes: Spread of sudden oak death in California (1990-2030). Ecosphere 2(2):art17(URL)

Swei, A., Meentemeyer, R.K., and Briggs, C. 2011. Influence of abiotic and environmental factors on the density and infection prevalence of Ixodes pacificus (Acari: Ixodidae) with Borrelia burgdorferi. Journal of Medical Entomology 48(1): 20-28(URL)

Kovacs, K., Vaclavik, T., Haight, R.G., Pang, A., Cunniffe, N.J., Gilligan, C.A., and Meentemeyer, R.K. 2011. Predicting the economic costs and property value losses attributed to sudden oak death damage in California (2010-2020). Journal of Environmental Management 92(4): 1292-1302(URL)

Meng, Q. and Meentemeyer, R.K. 2011. Modeling of multi-strata forest fire severity using Landsat TM Data. International Journal of Applied Earth Observation and Geoinformation 13(1): 120-126. (URL)

Bennett, D.A., Tang, W., and Wang, S. 2011. Toward an understanding of provenance in complex land use dynamics. Journal of Land Use Science 6(2): 211-230. (URL)

Tang, W., Bennett, D.A., and Wang, S. 2011. A parallel agent-based model of land use opinions. Journal of Land Use Science 6(2): 121-135. (URL)

2010

Delmelle, E. 2010. Spatial optimization methods. In: Wharf, B. (Ed). Encyclopedia of human geography: 2657-2659.

Vaclavik, T., Kanaskie, A., Hansen, E.M., Ohmann, J.L., Meentemeyer, R.K. 2010. Predicting potential and actual distribution of sudden oak death in Oregon: Prioritizing landscape contexts for early detection and eradication of disease outbreaks. Forest Ecology and Management 260(6): 1026-1035. (URL)

Davis, F.W., Borchert, M.I., Flint, A., Meentemeyer, R.K. and Rizzo, D.M. 2010. Pre-impact forest composition and ongoing tree mortality associated with sudden oak death disease in the Big Sur Region, California. Forest Ecology and Management 259(12): 2342-2354(URL)

Ellis, A., Vaclavik, T., and Meentemeyer R.K. 2010. When is connectivity important? A case study of the spatial pattern of sudden oak death. Oikos 119(3): 485-493. (URL)

Shoemaker, D.A. and Cropper Jr, W.P. 2010. Application of remote sensing, an artificial neural network leaf area model, and a process-based simulation model to estimate carbon storage in Florida slash pine plantations. Journal of Forestry Research 21(2): 171-176. (URL)

Butkiewicz, T., Meentemeyer, R.Shoemaker, D., Chang, R., Wartell, Z., Ribarsky, W. 2010. Alleviating the Modifiable Areal Unit Problem within Probe-Based Geospatial Analyses. Computer Graphics Forum 29(3): 923-932. (URL)

Cobb, R.C., Meentemeyer, R.K. and Rizzo, D.M. 2010. Apparent competition in canopy trees determined by pathogen transmission rather than susceptibility. Ecology 91(2): 327-333. (URL)

Delmelle, E., Delmelle-Cahill, E., Casas, I. and Barto, T. 2010. H.E.L.P: A GIS-based Health Exploratory AnaLysis Tool for Practitioners. Applied Spatial Analysis and Policy. DOI 10.1007/s12061/s12061-010-9048-2. (PDF)

Akella, M., Delmelle, E., Batta, R., Rogerson, P., and Blatt, A. 2010. Adaptive cell tower locations using geostatistics. Geographical Analysis 42(3): 227-244. (URL)

2009

Vanwalleghem, T. and Meentemeyer, R.K. 2009. Predicting forest microclimate in heterogeneous landscapes. Ecosystems 12(7): 1158-1172. (URL)

Vaclavik, T. and Meentemeyer, R.K. 2009. Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions? Ecological Modelling 220(23): 3248-3258. (URL)

Meentemeyer, R.K. 2009. Landscape epidemiology of Phytopthora ramorum: Measuring, mapping, and modeling spread. Phytopathology 99: S163.

Rodman, L.C., Jackson, J., and Meentemeyer, R.K. 2009. An Association Rule Discovery System Applied to Geographic Data, in L.Di and H.K. Ramapriyan, eds., Standards-Based Data and Information Systems for Earth Observations, Springer.

Delmelle, E. and Goovaerts, P. 2009. Second-phase sampling designs for non-stationary spatial variables. Geoderma 153: 205-216(URL)

Delmelle, E. and Dezzani, R. 2009. Overview, classification and selection of map projections for geospatial applications. In: Karimi, H. (ed.). Handbook of Research on GeoInformatics. Idea Group Reference. pp. 89-98.

Vaclavik, T. and Rogan, J. 2009. Identifying trends in land use/land cover changes in the context of post-socialistic transformation in Central Europe: A case study of the greater Olomouc region, Czech Republic.  GIScience & Remote Sensing 46(1): 54-76. (URL)

Delmelle, E. 2009. Point Pattern Analysis. In Kitchin R, Thrift N (eds) International Encyclopedia of Human Geography. 8: 204–211. Oxford: Elsevier.

Casas, I., Delmelle, E., and Varela, A. 2009. A Space-Time Approach to Diffusion of Health Service Provision Information. International Regional Science Review. OnlineFirst. (URL)

Meng, Q., Borders, B.E., Cieszewski, C.J., and Madden, M. 2009. Closest spectral fit for removing clouds and cloud shadows. Photogrammetric Engineering & Remote Sensing. 75(5): 569-576. (PDF)

Meng, Q., Cieszewski, C.J., and Madden, M. 2009. Large area forest inventory using Landsat ETM+: A geostatistical approach. ISPRS Journal of Photogrammetry and Remote Sensing. 64(1): 27-36. (URL)

2008

Meentemeyer, R.K.Anacker, B., Mark, W., and Rizzo, D.M.  2008. Early detection of emerging forest disease using dispersal estimation and ecological niche modeling. Ecological Applications 18(2): 377-390. (URL)

Meentemeyer, R.K., Rank, N.E., Anacker, B.L., Rizzo, D.M., and Cushman, J.H. 2008. Influence of land-cover change on the spread of an invasive forest pathogen. Ecological Applications 18(1): 159-171. (URL)

Cushman, J.H. and Meentemeyer, R.K. 2008. Multi-scale patterns of human activity and the incidence of an exotic forest pathogen. Journal of Ecology 96: 766-776. (URL)

Vaclavik, T. 2008. Mapping land-use/land-cover change in the Olomouc region, Czech Republic. URISA Journal 20(1):45-51. (PDF)

Anacker, B.L., Rank, N.E., Huberli, D., Garbelotto, M., Gordon, S., Whitkus,
R., Harnik, T., and Meentemeyer, R.K. 2008. Susceptibility to Phytophthora ramorum in a key infectious host: landscape variation in host genotype, phenotype, and environmental factors. New Phytologist 177: 756-766. (URL)

Meentemeyer, R.K., Rank, N.E., Shoemaker, D.Oneal, C., Wickland, A.C., Frangioso, K.M., Rizzo, D.M. 2008. Impacts of sudden oak death on tree mortality in the Big Sur ecoregion of California. Biological Invasions 10: 1243-1255. (URL)

2007

Condeso, T.E. and Meentemeyer, R.K. 2007. Effects of landscape heterogeneity on the emerging forest disease Sudden Oak Death. Journal of Ecology 95 (2): 364-375. (URL)

Casas I., Malik A., Delmelle E., Karwan M.H. and R. Batta. 2007. An automated network generation procedure for routing of unmanned aerial vehicles (UAVs) in a GIS environment. Networks and Spatial Economics, vol. 7: 153-176. I.F.: 1.01.

Storfer A., Murphy M., Evans J., Goldberg C., Robinson S., Spear R., Dezzani R., Delmelle E., Vierling L. and L. Waits. 2007. Putting the “Landscape” in landscape genetics. Heridity, vol. 98: 128-142. I.F.: 3.06

2006     (Center for Applied GIScience established)

Meentemeyer, R.K. 2006. Application of spatial modeling for early detection of Sudden Oak Death in forest landscapes. Phytopathology 96: S144.

Gordon, E. and Meentemeyer, R.K.  2006. Effects of dam operation and land use on stream channel morphology and riparian vegetation. Geomorphology 82: 412-429. (URL)

Rodman, L. and Meentemeyer, R.K.  2006. Geographical analysis of optimal wind turbine placement in northern California. Energy Policy 34 (15): 2137-2149. (URL)


RECENT CONFERENCE PROCEEDINGS

Delmelle E. 2011. On the Use of Heuristics for a Non-Linear Spatial Optimization ProblemGeocomputation 2011, UCL London.

Delmelle, E. 2010. Second-phase spatial sampling: Local and global objectives to optimize sampling patterns. Proceedings of the Spatial Accuracy Conference: pp 221-224.

Johnston, S., Rank, N., Cohen, M., and Meentemeyer, R.K. 2010. California Bay Laurel Susceptibility to Phytophthora ramorum Depends on Season, Leaf age, and Fungal Load. Proceedings of the International Sudden Oak Death Fourth Science Symposium. Gen. Tech. Rep. PSW-GTR-229. Albany, CA. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 378 p

Meentemeyer, R.K., Cunnife, N., and Gilligan, C. 2010. Predicting the Spread of Sudden Oak Death in California (2010-2030): Epidemic Outcomes under No Control. Proceedings of the International Sudden Oak Death Fourth Science Symposium. Gen. Tech. Rep. PSW-GTR-229. Albany, CA. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 378 p

Filipe, J.A.N., Gilligan, C., Meentemeyer, R.K. and Rizzo, D. 2010. Strategies for Control of Sudden Oak Death in Humboldt County – Informed Guidance Based on a Parameterised Epidemiological Model. Proceedings of the International Sudden Oak Death Fourth Science Symposium. Gen. Tech. Rep. PSW-GTR-229. Albany, CA. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 378 p

Vaclavik, T., Kanaskie, A., Goheen, E., Ohman, J., Hansen, E., and Meentemeyer, R.K. 2010. Mapping the Risk of Sudden Oak Death in Oregon: Prioritizing Locations for Early Detection and Eradication. Proceedings of the International Sudden Oak Death Fourth Science Symposium. Gen. Tech. Rep. PSW-GTR-229. Albany, CA. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 378 p

Cobb, R., Filipe, J.A.N., Gilligan, C., Meentemeyer, R.K., Lynch, S.S., Rizzo, D.M. 2010. Community and Individual Effects on Tanoak Susceptibility to Sudden Oak Death in California Redwood Forests. Proceedings of the International Sudden Oak Death Fourth Science Symposium. Gen. Tech. Rep. PSW-GTR-229. Albany, CA. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 378 p

Metz, M., Frangioso, K., Rizzo, D., and Meentemeyer, R.K. 2010. Interacting Disturbances: Did Sudden Oak Death Mortality in Big Sur Worsen the Impacts of the 2008 Basin Complex Wildfire? Proceedings of the International Sudden Oak Death Fourth Science Symposium. Gen. Tech. Rep. PSW-GTR-229. Albany, CA. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 378 p

Frangioso, K., Wickland, A., Metz, M., Rizzo, D., and Meentemeyer, R.K. 2010. The Big Sur Ecological Monitoring Plot Network: Distribution and Impacts of Sudden Oak Death in the Santa Lucia Mountains. Proceedings of the International Sudden Oak Death Fourth Science Symposium. Gen. Tech. Rep. PSW-GTR-229. Albany, CA. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 378 p

Rank, N., Cushman, H., and Meentemeyer, R.K. 2008. Woodland structure affects intensity of infection by an exotic forest pathogen. Proceedings of the sixth California oak symposium: today’s challenges, tomorrow’s opportunities. Gen. Tech. Rep. PSW-GTR-217. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 677 p

Anacker, B., Rank, N., Huberli, D., Garbelotto, M., Gordon, S., Whitkus, R., and Meentemeyer, R.K. 2008. Susceptibility to sudden oak death in California bay laurel. Proceedings of the sixth California oak symposium: today’s challenges, tomorrow’s opportunities. Gen. Tech. Rep. PSW-GTR-217. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 677 p

Cushman, H., and Meentemeyer, R.K. 2008. Human activity and spread of the pathogen that causes sudden oak death. Proceedings of the sixth California oak symposium: today’s challenges, tomorrow’s opportunities. Gen. Tech. Rep. PSW-GTR-217. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 677 p

Hunter, R., and Meentemeyer, R.K., 2008. GIS-based epidemiological modeling of an emerging forest disease: Spread of sudden oak death across California landscapes. Proceedings of the sixth California oak symposium: today’s challenges, tomorrow’s opportunities. Gen. Tech. Rep. PSW-GTR-217. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 677 p

Meentemeyer, R.K., and Cushman, H. 2008. Long-term change in oak woodlands and its influence on a forest disease. Proceedings of the sixth California oak symposium: today’s challenges, tomorrow’s opportunities. Gen. Tech. Rep. PSW-GTR-217. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 677 p

Meentemeyer, R.K., Rank, N.E., Anacker, B.L., Rizzo, D.M., and Cushman, J.H. 2008. Influence of woodland expansion (1942 to 2000) on the establishment of Phytophthora ramorumProceedings of the International Sudden Oak Death Third Science Symposium. Gen. Tech. Rep. PSW-GTR-214, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. 491 p

Magarey, R., Fowler, G., and Meentemeyer, R.K. 2008. Climate-Host Mapping of Phytophthora ramorum, Causal Agent of Sudden Oak Death. Proceedings of the International Sudden Oak Death Third Science Symposium. Gen. Tech. Rep. PSW-GTR-214, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. 491 p

Hunter, R.D., Meentemeyer, R.K., Rizzo, D.M., and Gilligan, C.A. 2008. Predicting the spread of sudden oak death in California: spatio-temporal modeling of susceptible-infectious transitions. Proceedings of the International Sudden Oak Death Third Science Symposium. Gen. Tech. Rep. PSW-GTR-214, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. 491 p

Condeso T.E. and Meentemeyer, R.K. 2008. Landscape heterogeneity of host availability and establishment of sudden oak death. Proceedings of the International Sudden Oak Death Third Science Symposium. Gen. Tech. Rep. PSW-GTR-214, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. 491 p

Shoemaker, D.S., Oneal, C.B., Rizzo, D.M., and Meentemeyer, R.K. 2008. Quantification of sudden oak death tree mortality in the Big Sur Ecoregion of California. Proceedings of the International Sudden Oak Death Third Science Symposium. Gen. Tech. Rep. PSW-GTR-214, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. 491 p

Cushman, J.H, Cooper, M., and Meentemeyer, R.K. 2008. Human activity and the spread of Phytophthora ramorumProceedings of the International Sudden Oak Death Third Science Symposium. Gen. Tech. Rep. PSW-GTR-214, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. 491 p

Cobb, R., Lynch, S.C., Meentemeyer, R.K., and Rizzo, D.M. 2008. Five years of monitoring infection and mortality in redwood tanoak forests. Proceedings of the International Sudden Oak Death Third Science Symposium. Gen. Tech. Rep. PSW-GTR-214, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. 491 p

Rank, N.E., Cushman, J.H., Anacker, B.L, Rizzo, D.M., and Meentemeyer, R.K. 2008. Influence of woodland composition and structure on infection by Phytophthora ramorumProceedings of the International Sudden Oak Death Third Science Symposium. Gen. Tech. Rep. PSW-GTR-214, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. 491 p

Anacker, B.L., Rank, N.E, Huberli, D., Garbelotto, M., Gordon, S., Whitkus, R., Harnik, T., Meshiry, and Meentemeyer, R.K. 2008. Susceptibility to Phytophthora ramorum in bay laurel, a key foliar host of sudden oak death. Proceedings of the International Sudden Oak Death Third Science Symposium. Gen. Tech. Rep. PSW-GTR-214, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. 491 p

Rodman, L.C., Jackson, J., Huizar III, R., and Meentemeyer, R.K. 2006. An Association Rule Discovery System for Geographic Data, 2006 IEEE Int’l Geoscience & Remote Sensing Symposium, Denver, CO, July 31-August 4, 2006.


BOOK CHAPTERS

Delmelle E. 2014. Space-Time Visualization of Dengue Fever Outbreaks with Meijuan Jia, Wenwu Tang, Coline Dony, Irene Casas. Upcoming for Edited Volume: Spatial Analysis in Health Geography, with Pavlos Kanaroglou, Antonio Paez, Eric Delmelle and Debarchana Ghosh (Eds.)

Delmelle E. 2013. Spatial Sampling in Fischer M. and P. Nijkamp Handbook of Regional Science, Springer.

Delmelle E. 2013. Model-Based Criteria for Second-Phase Spatial Sampling in Mateu, J. and M¨uller, W.G. Spatio-Temporal Design, Wiley.

Delmelle E. 2010. Spatial Optimization. In: In B. Wharf (ed). Encyclopedia of Human Geography, Sage Publications.

Delmelle E. 2009. Spatial Sampling. In: Fotheringham and Rogerson (eds.) Handbook of Spatial Analysis. Sage Publications

Delmelle E. 2009. Point Pattern Analysis. In: Kitchin and Thrift. (eds.) International Encyclopedia of Human Geography. Oxford, Elsevier.

Delmelle E. and R. Dezzani 2009. Overview, Classification and Selection of Map Projections for Geospatial Applications. In: Karimi H. (ed.) Handbook of Research on GeoInformatics. Idea Group Reference.

Tweet